462 research outputs found

    First and second order transition of frustrated Heisenberg spin systems

    Full text link
    Starting from the hypothesis of a second order transition we have studied modifications of the original Heisenberg antiferromagnet on a stacked triangular lattice (STA-model) by the Monte Carlo technique. The change is a local constraint restricting the spins at the corners of selected triangles to add up to zero without stopping them from moving freely (STAR-model). We have studied also the closely related dihedral and trihedral models which can be classified as Stiefel models. We have found indications of a first order transition for all three modified models instead of a universal critical behavior. This is in accordance with the renormalization group investigations but disagrees with the Monte Carlo simulations of the original STA-model favoring a new universality class. For the corresponding x-y antiferromagnet studied before, the second order nature of the transition could also not be confirmed.Comment: 31 pages, 13 figures, to be published in Euro. J. Phys.

    A Spin-1/2 Model for CsCuCl_3 in an External Magnetic Field

    Full text link
    CsCuCl_3 is a ferromagnetically stacked triangular spin-1/2 antiferromagnet. We discuss models for its zero-temperature magnetization process. The models range from three antiferromagnetically coupled ferromagnetic chains to the full three-dimensional situation. The situation with spin-1/2 is treated by expansions around the Ising limit and exact diagonalization. Further, weak-coupling perturbation theory is used mainly for three coupled chains which are also investigated numerically using the density-matrix renormalization group technique. We find that already the three-chain model gives rise to the plateau-like feature at one third of the saturation magnetization which is observed in magnetization experiments on CsCuCl_3 for a magnetic field perpendicular to the crystal axis. For a magnetic field parallel to the crystal axis, a jump is observed in the experimental magnetization curve in the region of again about one third of the saturation magnetization. In contrast to earlier spinwave computations, we do not find any evidence for such a jump with the model in the appropriate parameter region.Comment: 13 pages LaTeX2e with EPJ macro package (included), 8 (e)ps figures included using psfig.sty; this is the final version to appear in Eur. Phys. J B; a few further explanations and one reference adde

    Application of Microcanonical Temperature to the Spin Crossover of Fe-co Compounds

    Full text link
    Using the Rugh's microcanonical approach to temperature we study the classical model of three dimensional spin-crossover of Fe-Co compounds. These compounds are characterized by magnetic ions that can be in a high-spin or low-spin state. We consider the case of diamagnetic low-spin state. The values of the magnetization average, and fraction of high-spin/low-spin are studied over a wide range of values for the system size, temperature, magnetic field, energy difference, nearest neighbor coupling and exchange interaction. We also address the metastability according to the relative values of interaction parameters and the phase diagram of the model. Keywords: phase transition, dynamical temperature, spin crossove

    Quantum shock waves in the Heisenberg XY model

    Full text link
    We show the existence of quantum states of the Heisenberg XY chain which closely follow the motion of the corresponding semi-classical ones, and whose evolution resemble the propagation of a shock wave in a fluid. These states are exact solutions of the Schroedinger equation of the XY model and their classical counterpart are simply domain walls or soliton-like solutions.Comment: 15 pages,6 figure

    Dynamical Effective Medium Theory for Quantum Spins and Multipoles

    Full text link
    A dynamical effective medium theory is presented for quantum spins and higher multipoles such as quadrupole moments. The theory is a generalization of the spherical model approximation for the Ising model, and is accurate up to O(1/z_n) where z_n is the number of interacting neighbors. The polarization function is optimized under the condition that it be diagonal in site indices. With use of auxiliary fields and path integrals, the theory is flexibly applied to quantum spins and higher multipoles with many interacting neighbors. A Kondo-type screening of each spin is proposed for systems with extreme quantum fluctuations but without conduction electrons.Comment: 16 pages, 3 Postscript figure

    Resonance in One--Dimensional Fermi--Edge Singularity

    Full text link
    The problem of the Fermi--edge singularity in a one--dimensional Tomonaga--Luttinger liquid is reconsidered. The backward scattering of the conduction band electrons on the impurity--like hole in the valence band is analyzed by mapping the problem onto a Coulomb gas theory. For the case when the electron--electron interaction is repulsive the obtained exponent of the one--dimensional Fermi--edge singularity appears to be different from the exponent found in the previous studies. It is shown that the infrared physics of the Fermi--edge singularity in the presence of backward scattering and electron--electron repulsion resembles the physics of the Kondo problem.Comment: 38 pages and 1 figure, to be published in PR

    Oblique triangular antiferromagnetic phase in CsCu1−x_{1-x}Cox_xCl3_3

    Full text link
    The spin-1/2 stacked triangular antiferromagnet CsCu1−x_{1-x}Cox_xCl3_3 with 0.015<x<0.0320.015<x<0.032 undergoes two phase transitions at zero field. The low-temperature phase is produced by the small amount of Co2+^{2+} doping. In order to investigate the magnetic structures of the two ordered phases, the neutron elastic scattering experiments have been carried out for the sample with x≈0.03x\approx 0.03. It is found that the intermediate phase is identical to the ordered phase of CsCuCl3_3, and that the low-temperature phase is an oblique triangular antiferromagnetic phase in which the spins form a triangular structure in a plane tilted from the basal plane. The tilting angle which is 42∘^{\circ} at T=1.6T=1.6 K decreases with increasing temperature, and becomes zero at TN2=7.2T_{\rm N2} =7.2 K. An off-diagonal exchange term is proposed as the origin of the oblique phase.Comment: 6 pages, 7 figure

    TUNNELING SPECTROSCOPY OF QUANTUM CHARGE FLUCTUATIONS IN THE COULOMB BLOCKADE

    Full text link
    We present a theory of Coulomb blockade oscillations in tunneling through a pair of quantum dots connected by a tunable tunneling junction. The positions and amplitudes of peaks in the linear conductance are directly related, respectively, to the ground state energy and to the dynamics of charge fluctuations. We study analytically both strong and weak interdot tunneling. As the tunneling decreases, the period of the peaks doubles, as observed experimentally. In the strong tunneling limit, we predict a striking power law temperature dependence of the peak amplitudes.Comment: 4 pages, revtex3.0, 1 figure uuencode
    • …
    corecore